Synopsis
Two-dimensional beta model function.
Syntax
beta2d
Description
The beta model is a Lorentz model with a varying power law.
Example
>>> create_model_component("beta2d", "mdl")
>>> print(mdl)Create a component of the beta2d model and display its default parameters. The output is:
mdl Param Type Value Min Max Units ----- ---- ----- --- --- ----- mdl.r0 thawed 10 1.17549e-38 3.40282e+38 mdl.xpos thawed 0 -3.40282e+38 3.40282e+38 mdl.ypos thawed 0 -3.40282e+38 3.40282e+38 mdl.ellip frozen 0 0 0.999 mdl.theta frozen 0 -6.28319 6.28319 radians mdl.ampl thawed 1 -3.40282e+38 3.40282e+38 mdl.alpha thawed 1 -10 10
ATTRIBUTES
The attributes for this object are:
| Attribute | Definition |
|---|---|
| r0 | The core radius. |
| xpos | X0 axis coordinate of the model center (position of the peak). |
| ypos | X1 axis coordinate of the model center (position of the peak). |
| ellip | The ellipticity of the model. |
| theta | The angle of the major axis. It is in radians, measured counter-clockwise from the X0 axis (i.e. the line X1=0). |
| ampl | The model value at the peak position (xpos, ypos). |
| alpha | The power-law slope of the profile at large radii. |
Notes
The functional form of the model for points is:
f(x0,x1) = ampl * (1 + r(x0,x1)^2)^(-alpha)
r(x0,x1)^2 = xoff(x0,x1)^2 * (1-ellip)^2 + yoff(x0,x1)^2
-------------------------------------------
r0^2 * (1-ellip)^2
xoff(x0,x1) = (x0 - xpos) * cos(theta) + (x1 - ypos) * sin(theta)
yoff(x0,x1) = (x1 - ypos) * cos(theta) - (x0 - xpos) * sin(theta)The grid version is evaluated by adaptive multidimensional integration scheme on hypercubes using cubature rules, based on code from HIntLib ( [1] ) and GSL ( [2] ).
References
- [1] HIntLib - High-dimensional Integration Library http://mint.sbg.ac.at/HIntLib/
- [2] GSL - GNU Scientific Library http://www.gnu.org/software/gsl/
Bugs
See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.
See Also
- models
- beta1d, devaucouleurs2d, hubblereynolds, sersic2d