Last modified: December 2023

URL: https://cxc.cfa.harvard.edu/sherpa/ahelp/get_reg_unc.html
AHELP for CIAO 4.16 Sherpa

get_reg_unc

Context: confidence

Synopsis

Return the region-uncertainty object.

Syntax

get_reg_unc(par0=None, par1=None, id=None, otherids=None, recalc=False,
min=None, max=None, nloop=(10, 10), delv=None, fac=4, log=(False,
False), sigma=(1, 2, 3), levels=None, numcores=None)

id - str or int, optional
otherids - list of str or int, optional
recalc - bool, optional
fast - bool, optional
min - pair of numbers, optional
max - pair of number, optional
nloop - pair of int, optional
delv - pair of number, optional
fac - number, optional
log - pair of bool, optional
sigma - sequence of number, optional
levels - sequence of number, optional
numcores - optional

Description

This returns (and optionally calculates) the data used to display the `reg_unc` contour plot. Note that if the the `recalc` parameter is `False` (the default value) then all other parameters are ignored and the results of the last `reg_unc` call are returned.


Examples

Example 1

Return the results for the `reg_unc` run for the `xpos` and `ypos` parameters of the `src` component, for the default data set:

>>> reg_unc(src.xpos, src.ypos)
>>> runc = get_reg_unc()

Example 2

Since the `recalc` parameter has not been changed to `True` , the following will return the results for the last call to `reg_unc` , which may not have been for the r0 and alpha parameters:

>>> runc = get_reg_unc(src.r0, src.alpha)

Example 3

Create the data without creating a plot:

>>> runc = get_reg_unc(pl.gamma, gal.nh, recalc=True)

Example 4

Specify the range and step size for both the parameters, in this case pl.gamma should vary between 0.5 and 2.5, with gal.nh between 0.01 and 1, both with 51 values and the nH range done over a log scale:

>>> runc = get_reg_unc(pl.gamma, gal.nh, id="src",
...                    min=(0.5, 0.01), max=(2.5, 1),
...                    nloop=(51, 51), log=(False, True),
...                    recalc=True)

PARAMETERS

The parameters for this function are:

Parameter Definition
par0 The parameters to plot on the X and Y axes, respectively. These arguments are only used if `recalc` is set to `True` .
par1 The parameters to plot on the X and Y axes, respectively. These arguments are only used if `recalc` is set to `True` .
id The data set that provides the data. If not given then all data sets with an associated model are used simultaneously.
otherids Other data sets to use in the calculation.
recalc The default value ( False ) means that the results from the last call to `reg_unc` (or `get_reg_unc` ) are returned, ignoring all other parameter values. Otherwise, the statistic curve is re-calculated, but not plotted.
fast If True then the fit optimization used may be changed from the current setting (only for the error analysis) to use a faster optimization method. The default is False .
min The minimum parameter value for the calculation. The default value of none means that the limit is calculated from the covariance, using the `fac` value.
max The maximum parameter value for the calculation. The default value of none means that the limit is calculated from the covariance, using the `fac` value.
nloop The number of steps to use. This is used when `delv` is set to none .
delv The step size for the parameter. Setting this over-rides the `nloop` parameter. The default is none .
fac When `min` or `max` is not given, multiply the covariance of the parameter by this value to calculate the limit (which is then added or subtracted to the parameter value, as required).
log Should the step size be logarithmically spaced? The default ( False ) is to use a linear grid.
sigma The levels at which to draw the contours. The units are the change in significance relative to the starting value, in units of sigma.
levels The numeric values at which to draw the contours. This over-rides the `sigma` parameter, if set (the default is none ).
numcores The number of CPU cores to use. The default is to use all the cores on the machine.

Return value

The return value from this function is:

rproj -- The fields of this object can be used to re-create the plot created by `reg_unc` .


Bugs

See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.

See Also

confidence
conf, confidence, covar, covariance, get_conf, get_conf_results, get_covar, get_covar_opt, get_covar_results, get_covariance_results, get_int_proj, get_int_unc, get_proj, get_proj_opt, get_proj_results, get_projection_results, get_reg_proj, int_proj, int_unc, proj, projection, reg_proj, reg_unc, set_conf_opt, set_covar_opt, set_proj_opt
contrib
get_chart_spectrum, get_marx_spectrum
data
get_areascal, get_arf, get_arf_plot, get_axes, get_backscal, get_bkg, get_bkg_arf, get_bkg_chisqr_plot, get_bkg_delchi_plot, get_bkg_fit_plot, get_bkg_model, get_bkg_model_plot, get_bkg_plot, get_bkg_ratio_plot, get_bkg_resid_plot, get_bkg_rmf, get_bkg_scale, get_bkg_source, get_bkg_source_plot, get_coord, get_counts, get_data, get_data_contour, get_data_contour_prefs, get_data_image, get_data_plot, get_data_plot_prefs, get_dep, get_dims, get_error, get_exposure, get_grouping, get_indep, get_quality, get_rmf, get_specresp, get_staterror, get_syserror
filtering
get_filter
fitting
calc_stat_info, get_stat_info
info
get_default_id, list_stats
methods
get_draws, get_iter_method_name, get_iter_method_opt, get_method, get_method_name, get_method_opt
modeling
get_model, get_model_component, get_model_component_image, get_model_component_plot, get_model_plot, get_num_par, get_num_par_frozen, get_num_par_thawed, get_order_plot, get_par, get_pileup_model, get_response, get_source, get_source_component_image, get_source_component_plot, get_source_contour, get_source_image, get_source_plot, image_source
plotting
get_split_plot
psfs
get_psf, get_psf_contour, get_psf_image, get_psf_plot
statistics
get_chisqr_plot, get_delchi_plot, get_prior, get_sampler, get_stat, get_stat_name
utilities
get_analysis, get_rate
visualization
image_getregion