Synopsis
Return the region-uncertainty object.
Syntax
get_reg_unc(par0=None, par1=None, id=None, otherids=None, recalc=False, min=None, max=None, nloop=(10, 10), delv=None, fac=4, log=(False, False), sigma=(1, 2, 3), levels=None, numcores=None) id - str or int, optional otherids - list of str or int, optional recalc - bool, optional fast - bool, optional min - pair of numbers, optional max - pair of number, optional nloop - pair of int, optional delv - pair of number, optional fac - number, optional log - pair of bool, optional sigma - sequence of number, optional levels - sequence of number, optional numcores - optional
Description
This returns (and optionally calculates) the data used to display the `reg_unc` contour plot. Note that if the the `recalc` parameter is `False` (the default value) then all other parameters are ignored and the results of the last `reg_unc` call are returned.
Examples
Example 1
Return the results for the `reg_unc` run for the `xpos` and `ypos` parameters of the `src` component, for the default data set:
>>> reg_unc(src.xpos, src.ypos) >>> runc = get_reg_unc()
Example 2
Since the `recalc` parameter has not been changed to `True` , the following will return the results for the last call to `reg_unc` , which may not have been for the r0 and alpha parameters:
>>> runc = get_reg_unc(src.r0, src.alpha)
Example 3
Create the data without creating a plot:
>>> runc = get_reg_unc(pl.gamma, gal.nh, recalc=True)
Example 4
Specify the range and step size for both the parameters, in this case pl.gamma should vary between 0.5 and 2.5, with gal.nh between 0.01 and 1, both with 51 values and the nH range done over a log scale:
>>> runc = get_reg_unc(pl.gamma, gal.nh, id="src", ... min=(0.5, 0.01), max=(2.5, 1), ... nloop=(51, 51), log=(False, True), ... recalc=True)
PARAMETERS
The parameters for this function are:
Parameter | Definition |
---|---|
par0 | The parameters to plot on the X and Y axes, respectively. These arguments are only used if `recalc` is set to `True` . |
par1 | The parameters to plot on the X and Y axes, respectively. These arguments are only used if `recalc` is set to `True` . |
id | The data set that provides the data. If not given then all data sets with an associated model are used simultaneously. |
otherids | Other data sets to use in the calculation. |
recalc | The default value ( False ) means that the results from the last call to `reg_unc` (or `get_reg_unc` ) are returned, ignoring all other parameter values. Otherwise, the statistic curve is re-calculated, but not plotted. |
fast | If True then the fit optimization used may be changed from the current setting (only for the error analysis) to use a faster optimization method. The default is False . |
min | The minimum parameter value for the calculation. The default value of none means that the limit is calculated from the covariance, using the `fac` value. |
max | The maximum parameter value for the calculation. The default value of none means that the limit is calculated from the covariance, using the `fac` value. |
nloop | The number of steps to use. This is used when `delv` is set to none . |
delv | The step size for the parameter. Setting this over-rides the `nloop` parameter. The default is none . |
fac | When `min` or `max` is not given, multiply the covariance of the parameter by this value to calculate the limit (which is then added or subtracted to the parameter value, as required). |
log | Should the step size be logarithmically spaced? The default ( False ) is to use a linear grid. |
sigma | The levels at which to draw the contours. The units are the change in significance relative to the starting value, in units of sigma. |
levels | The numeric values at which to draw the contours. This over-rides the `sigma` parameter, if set (the default is none ). |
numcores | The number of CPU cores to use. The default is to use all the cores on the machine. |
Return value
The return value from this function is:
rproj -- The fields of this object can be used to re-create the plot created by `reg_unc` .
Bugs
See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.
See Also
- confidence
- conf, confidence, covar, covariance, get_conf, get_conf_results, get_covar, get_covar_opt, get_covar_results, get_covariance_results, get_int_proj, get_int_unc, get_proj, get_proj_opt, get_proj_results, get_projection_results, get_reg_proj, int_proj, int_unc, proj, projection, reg_proj, reg_unc, set_conf_opt, set_covar_opt, set_proj_opt
- contrib
- get_chart_spectrum, get_marx_spectrum
- data
- get_areascal, get_arf, get_arf_plot, get_axes, get_backscal, get_bkg, get_bkg_arf, get_bkg_chisqr_plot, get_bkg_delchi_plot, get_bkg_fit_plot, get_bkg_model, get_bkg_model_plot, get_bkg_plot, get_bkg_ratio_plot, get_bkg_resid_plot, get_bkg_rmf, get_bkg_scale, get_bkg_source, get_bkg_source_plot, get_coord, get_counts, get_data, get_data_contour, get_data_contour_prefs, get_data_image, get_data_plot, get_data_plot_prefs, get_dep, get_dims, get_error, get_exposure, get_grouping, get_indep, get_quality, get_rmf, get_specresp, get_staterror, get_syserror
- filtering
- get_filter
- fitting
- calc_stat_info, get_stat_info
- info
- get_default_id, list_stats
- methods
- get_draws, get_iter_method_name, get_iter_method_opt, get_method, get_method_name, get_method_opt
- modeling
- get_model, get_model_component, get_model_component_image, get_model_component_plot, get_model_plot, get_num_par, get_num_par_frozen, get_num_par_thawed, get_order_plot, get_par, get_pileup_model, get_response, get_source, get_source_component_image, get_source_component_plot, get_source_contour, get_source_image, get_source_plot, image_source
- plotting
- get_split_plot
- psfs
- get_psf, get_psf_contour, get_psf_image, get_psf_plot
- statistics
- get_chisqr_plot, get_delchi_plot, get_prior, get_sampler, get_stat, get_stat_name
- utilities
- get_analysis, get_rate
- visualization
- image_getregion